Pavement Drainage

This section was extracted from the Urban Drainage Design Manual, **Hydraulic Engineering Circular Number 22 (HEC-22)**, Pavement Drainage; published by the Federal Highway Administration in November 1996. All charts referred to in this section are provided in HEC 22 Charts.

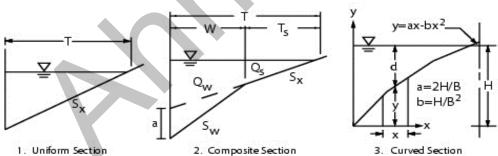
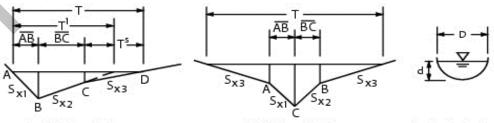

1.1 Selection of Check Storm and Spread


Table 6-1: Suggested Minimum Design Frequency and Spread				
Road Classification		Design Frequency	Design Spread	
High Volume,	<70 km/hr (45 mph)	10-year	Shoulder +1m	
Divided, or	>70 km/hr (45 mph)	10-year	Shoulder	
Bi-Directional	Sag Point	5-year	Shoulder +1m	
Collector	<70 km/hr (45 mph)	10-year	1/2 driving lane	
	>70 km/hr (45 mph)	10-year	Shoulder	
	Sag Point	10-year	1/2 driving lane	
Local Streets	Low ADT	5-year	1/2 driving lane	
	High ADT	10-year	1/2 driving lane	
	Sag Point	10-year	1/2 driving lane	


Grate Inlets on Grade

1.2 Roadside and Median Channels

a. Conventional Curb and Gutter Sections

1. "V"-Shape Gutter 2. "V"-Shape Median

Circular Section

1

1.3 Flow in Gutters

$$Q = \frac{k_c}{n} S_x^{1.67} S_L^{0.50} T^{2.67}$$

Where:

Kc = 0.376

n = Manning's coefficient
Q = Gutter Flow rate (m³/s)
T = Width of flow—spread (m)

 S_X = Cross slope (m/m)

 S_L = Longitudinal slope (m/m)

$$d = TS_x$$

Where:

d = Depth of flow (m)

T = Width of flow—spread (m)

 S_X = Cross slope (m/m)

Table 6-3: Manning's n for Street and Pavement Gutters			
Type of Gutter or Pavement	Manning's n		
Concrete gutter, trowled finish	0.012		
Asphalt pavement, smooth texture	0.013		
Asphalt pavement, rough texture	0.016		
Concrete gutter-asphalt pavement, smooth	0.013		
Concrete gutter-asphalt pavement, rough	0.015		
Concrete pavement, float finish	0.014		
Concrete pavement, broom finish	0.016		
For gutters with small slope, where sediment may accumulate, increase the above values of "n" by 0.02			

Reference: USDOT, FHWA, HDS-3

1.4 Gutter Flow Velocity

$$V = \frac{k_c}{n} S_x^{0.67} S_L^{0.50} T^{0.67}$$

Where:

V = Velocity in the triangular channel (m/sec.)

Kc = 0.752

n = Manning's coefficient S_X = Cross slope (m/m)

 S_L = Longitudinal slope (m/m)

T = Width of flow—spread (m)

Step 1. Compute the interception capacity of the curb-opening upstream of the grate

Curb Opening Length Required to intercept 100% of Gutter Flow (m)

$$L_T = k_c Q^{0.42} S_L^{0.30} (\frac{1}{n S_X})^{0.60}$$

Where:

 L_T = Curb Opening Length Required to intercept 100% of Gutter Flow (m)

Kc = 0.817

n = Manning's coefficient

 S_X = Cross slope (m/m)

 S_L = Longitudinal slope (m/m)

Q = Gutter Flow rate (m³/s)

The efficiency of Curb Opening inlets shorter than the length required for total interception

$$E_c = 1 - \left[1 - \frac{L}{L_T}\right]^{1.80}$$

Where:

L_T = Curb Opening Length Required to intercept 100% of Gutter Flow (m)

L = Curb Opening Length (m)

E_C = The efficiency of Curb Opening inlets

Interception capacity of the curb-opening upstream of the grate

$$Q_{ic} = E Q$$

Where:

Q_{ic} = interception capacity of the curb-opening upstream of grate (m³/s)

E = The efficiency of Curb Opening inlets

Q = Gutter Flow rate (m³/s)